skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ertugrul, Itir Onal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most approaches to automatic facial action unit (AU) detection consider only spatial information and ignore AU dynamics. For humans, dynamics improves AU perception. Is same true for algorithms? To make use of AU dynamics, recent work in automated AU detection has proposed a sequential spatiotemporal approach: Model spatial information using a 2D CNN and then model temporal information using LSTM (Long-Short-Term Memory). Inspired by the experience of human FACS coders, we hypothesized that combining spatial and temporal information simultaneously would yield more powerful AU detection. To achieve this, we propose FACS3D-Net that simultaneously integrates 3D and 2D CNN. Evaluation was on the Expanded BP4D+ database of 200 participants. FACS3D-Net outperformed both 2D CNN and 2D CNN-LSTM approaches. Visualizations of learnt representations suggest that FACS3D-Net is consistent with the spatiotemporal dynamics attended to by human FACS coders. To the best of our knowledge, this is the first work to apply 3D CNN to the problem of AU detection. 
    more » « less